TRIFLUOROACETIC ACID CATALYZED AND THERMAL REARRANGEMENT OF≪ - ARYLOXYMETHYL CINNAMIC_ACIDS.

T.V.Krishnamoorthy and K.Rajagopalan Department of Organic Chemistry, University of Madras Guindy Campus, Madras - 600 025, INDIA. and

K.K.Balasubramanian Chemistry Department, Indian Institute of Technology Madras - 600 036, INDIA.

Abstract. Several \ll - aryloxymethyl cinnamic acids 1 have been rearranged in refluxing trifluoroacetic acid (TFA). The thermal rearrangement of the same acids in Polyethylene glycol - 200 (PEG - 200) has also been investigated.

The use of TFA as a solvent in ortho Claisen rearrangement has been reported to cause tremendous rate enhancement (as much as 10^{-1}) as compared to that in other solvents (1,2). An interesting synthesis of a naturally occuring isocoumarin [±] Mellin has been reported via an ortho Claisen rearrangement in TFA (3). In this paper, we report the TFA catalyzed rearrangement of several \ll - aryloxymethyl cinnamic acids 1. These acids were prepared by the reaction of phenols with \ll - bromomethyl cinnamic acid <u>2</u> (4) in the presence of sodium hydroxide.

There was no reaction when α - aryloxymethylacrylic acids (5) or their methyl esters were refluxed in TFA for 24 hr or even for longer periods. However, refluxing α -p- (chlorophenoxymethyl) cinnamic acid 1a in a ten-fold excess of TFA for 24 hr followed by workup furnished a neutral product in 80% yield ; m.p. 158-159°C. IR (KBr) spectrum showed a carbonyl absorption at 1700 cm⁻¹. The PMR (CDC1₃/TMS) showed the following features : d 4.0 (d, 2H, J = 3 Hz), 6.9-7.2 (m, 3H), 7.4 (s, 5H) and 8.1 (t, 1H, J = 3 Hz). Mass spectrum and elemental analysis indicated a molecular formula of C₁(H₁ClO₂. Based on these data, structure 3a was assigned for the product obtained in the rearrangement. The absence of any fragment corresponding to m/e - 91 (C6H₅CH₂) in the mass spectrum ruled out the alternative structure 4a. The more favourable 'E' configuration about the double bond is assumed. In the case of other acids, viz., p-methyl 1b, p-ethyl 1c and 3.5-dimethyl 1d, the products were found to be a mixture of 3-benzylidene coumarins 3 and 3methylene - 4 - phenyl coumarins 5 (6), as evidenced by PMR spectrum of the crude reaction mixture. A clean separation of the products could not be achieved. The coumarin 3a was smoothly isomerized to the 3-benzyl coumarin 4a (m.p. 140-142°C) with DBN in refluxing benzene for 2 hr. The PMR spectrum of the isomerized product showed significantly the absence of the downfield triplet at d 8.1. The methyl esters of the acids 1 were also found to behave similarly when refluxed in TFA. The same coumarin 3a was obtained when the

acid 1a was refluxed in o-dichlorobenzene in the presence of p-toluene sulfonic acid.

In remarkable contrast to the TFA catalyzed rearrangements, the thermal rearrangements of these acids 1 in high boiling solvents afforded only the products arising via a (3,3) sigmatropic rearrangement. Further, it was observed that the nature of the solvent employed, played a significant role in determining the nature of the final product. Thus refluxing the acids 1a and 1b in o-dichlorobenzene for 22 hr gave rise to the respective 3 - methylene - 4 - phenyl coumarins 5a (m.p. 123-125°C, 50%) and 5b (m.p. 105-106°C, 54%), whereas in PEG - 200 (reflux temperature for 1 hr), a solvent which has come to prominence in recent times (7,8,9), or in N,N - diethylaniline (reflux temperature for 3 hr) the 3-methyl-4-phenyl coumarins 6a and 6b were the exclusive products. A few other cinnamic acids also underwent this rearrangement.

The TFA catalyzed rearrangement may essentially proceed by a concerted (1,3) and (3,3) sigmatropic rearrangements to furnish the coumarins 3a and 5 respectively. Alternatively, a non-concerted as well as a concerted mechanism may operate simultaneously. These two possible modes of rearrangement are depicted in the Chart. Under thermal conditions, a (3,3) sigmatropic rearrangement is likely to be the sole pathway leading to the methylene coumarins 5 or methyl coumarins 6. The mechanistic implications of these transformations are being investigated.

Acknowledgement. TVK thanks the University Grants Commission and the Tamilnad Government for the award of a Teacher Fellowship under the Faculty Improvement TVK thanks the University Grants Commission and the Tamilnadu Programme.

REFERENCES

All the isolated compounds reported in this paper showed satisfactory elemental analysis and spectral properties.

- 1.
- Ulla Svanholm and V.D.Parker, J.Chem.Soc. Chem.Comm., 645 (1972). Ulla Svanholm and V.D.Parker, J.Chem.Soc. Perk.Trans. II., 169 (1974). 2.
- 3. 4.
- L.M.Harwood, J.Chem.Soc. Chem.Comm., 1120 (1982). M.C.Eagen and N.H.Cromwell, J.Org.Chem., 39, 3863 (1974). B.Gopalan, K.Rajagopalan, K.K.Balasubramanian and S.Swaminathan,
- 5. Tetrahedron Letters., 1507 (1975).
- 6. T.Perumal Pillai, Ph.D.Thesis, Madras University (1979).
- E.Santaniello, P.Ferraboschi and P.Sozzani, J.Org.Chem., 46, 4584 (1981). 7. N.Suzuki, Y.Ayaguchi and Y.Izawa, Bull.Chem.Soc., (Japan) 55, 3349 (1982) and references cited therein. 8.
- 9.a) R.Colombo, Tetrahedron Letters., 4129 (1981).
 b) V.N.R.Pillai, M.Mutter, C.Baeyer and Gatfield, J.Org.Chem., 45, 5364 (1980) and references cited therein.

(Received in UK 11 February 1985)